ORGANIC CHEMISTRY OF SUPEROXIDE. I. OXIDATIONS OF AROMATIC COMPOUNDS.

G. Crank* and M.I.H. Makin

Department of Applied Organic Chemistry, University of New South Wales P.O. Box 1, Kensington, N.S.W., 2033, Australia.

Potassium superoxide is a selective oxidant for aromatic compounds with the order of susceptibility of substituent groups being -SH>-NH₂>-OH. Only o- and p- disubstituted amines and phenols are oxidized but monosubstituted thiols react.

Following the recent discovery of the important enzyme Superoxide Dismutase¹ considerable attention has been paid to the organic chemistry of the superoxide radical-ion² to evaluate its role in biological systems. In this context its reaction with catechol derivatives³ is particularly interesting since the products obtained are similar to those formed in biological oxidation by mono-oxygenase enzymes. Preliminary results are now presented for the action of super-oxide on related disubstituted aromatics and also for some monosubstituted aromatics.

o-Phenylenediamine (1 g) in dry toluene (100 ml) was stirred under N₂ at 25° with excess KO₂ (2 g) for 48 hrs. Residual KO₂ was destroyed by cautious addition of water, and the toluene extract, after concentration, was chromatographed in a short column of t.l.c. grade silica gel. The only significant product formed was a red crystalline compound, m.p. 135°, identified as 2,2'-diaminoazobenzene.

The other compounds listed in Table 1, when similarly treated with KO_2 gave the products indicated.

Table 1			
Reactant	Product [†]	<u>m.p.</u>	Crude Yield (%)
<pre>o-Phenylenediamine</pre>	2,2'-Diaminoazobenzene	135°	70
p-Phenylenediamine	4,4'-Diaminoazobenzene	252°	40
<i>m</i> -Phenylenediamine	No reaction	-	-
<pre>o-Aminophenol</pre>	2,2'-Dihydroxyazobenzene	174°	70
p-Aminophenol	4,4'-Dihydroxyazobenzene	218°	35
m-Aminophenol	No reaction	-	-
<pre>o-Aminothiophenol</pre>	2,2'-Diaminodiphenyldisulphide	93°	85
Thiophenol	Diphenyldisulphide	60°	80
Toluene-3,4-dithiol	Dimethyldibenzo-(1,2,5,6)-tetrathiocin	192-195°	60
Pheno1	No reaction	-	-
Anılıne	No reaction	-	-
<pre>0-Methoxyaniline</pre>	No reaction	-	-

⁺ All compounds had satisfactory elemental analysis; i.r., mass and n.m.r. spectra were fully in accord with structures presented. 2169 The reactions of o- and p-phenylenediamines with superoxide are different from the reactions reported for the analogous compounds catechol³ and hydroquinone⁴, which give ring cleavage products and p-benzoquinone respectively. The latter reactions have been interpreted in terms of an initial hydrogen abstraction by 0_2 : from the reactants. Although direct evidence is lacking a similar process is suggested in the present case, where it is envisaged that 0_2 : abstracts a hydrogen atom from the amino group. Subsequent reactions, at present unknown, then take place to yield the observed products.

This process is repeated for o- and p-aminophenol, where formation of azo derivatives indicates preferential reaction of the amino group. It is significant that conjugated disubstitution is required for oxidation, since aniline, phenol, *m*-phenylenediamine and *m*-aminophenol failed to react with the reagent.

Introduction of a thiol group directs the reaction to another path as seen by formation of the disulphide from o-aminothiophenol. Thus the susceptibility to attack by O_2 : appears to be in the order -SH>-NH₂>-OH in aromatic molecules, and thiophenol was the only monosubstituted aromatic compound to react. Clearly O_2 : is a relatively weak but rather selective reagent and this point may have considerable significance in biological systems.

Oxidation of toluene-3,4-dithiol with O_2 : was notable as it provided a good yield of the novel dibenzo-(1,2,5,6)-tetrathiocin. High resolution mass spectrum, m/e - 307.985, $C_{14}H_{12}S_4$ requires m/e - 307.982. The i.r. spectrum indicated absence of SH while the n.m.r. spectrum had two signals for -CH₃ suggesting a mixture of isomers.

Further studies are under way to investigate the mechanisms of these reactions and to explore the selectivity of O_2 : towards other organic compounds.

References

- Michelson, A.M., McCord, J.M. and Fridovich, I. (Eds.) "Superoxide and Superoxide Dismutase", p.1, Academic Press, London (1977).
- 2. Lee-Ruff, E., Chem. Soc. Revs., 6, 195(1977).
- 3. Moro-oka, Y., and Foote, C.S., J. Amer. Chem. Soc., 98, 1510(1976).
- 4. Lee-Ruff, E., Lever, A.B.P. and Rigaudy, J., Canad. J. Chem., 54, 1837(1976).